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The results are presented of turbulence measurements on an 'infinite' swept wing, 
simulated by a duct attached to a blower tunnel. The configuration is close to that 
used at the Netherlands NLR except that the boundary layer does not quite separate. 
The measurements include triple products, and a balance of the transport equation 
for turbulent energy is presented. The results confirm the NLR finding of a significant 
decrease in the magnitude of shear stress compared with an equivalent two- 
dimensional boundary layer: this is evidently the effect of crossflow on large eddies 
that have initially developed in a two-dimensional boundary layer. This unexpected 
effect of three-dimensionality is at least as important in prediction of real-life flows 
as the better-known lag between the direction of the shear stress and that of the 
mean-velocity gradient. Tentative suggestions for modelling the reduction in shear- 
stress magnitude are advanced. 

1. Introduction 
Most current calculation methods for three-dimensional (' 3D ') boundary layers are 

formal, rotationally invariant extensions of two-dimensional methods, in which the 
' spanwise ' component of shear stress -using aeronautical terminology for convenience 
- is modelled in the same way as the chordwise component. A typical 3D flow is that 
over a swept-back wing, with fairly small pressure gradients over the front portion, 
followed by a positive chordwise (axial) pressure gradient with isobars roughly 
coincident with the swept-back generators of the wing surface, so that the negative 
pressure gradient in the spanwise direction (normal to the aircraft axis) deflects the 
flow towards the wingtip. 

It has been accepted for many years that if an initially two-dimensional boundary 
layer is driven into three-dimensionality by a pressure gradient, the direction of the 
shear-stress vector (that is, the direction of the two-component vector seen in plan 
view, whose components are the ' chordwise', or axial, and ' spanwise', or lateral, 
components of shear stress) lags behind the direction of the velocity-gradient vector, 
whose components are the gradients, normal to the surface, of the chordwise and 
spanwise velocity components. In  the axes used below, e.g. figure 1, in which z is the 
chordwise and z the spanwise direction, with y as the direction normal to the surface, 
this implies 

Note that, if the effect of three-dimensionality is to produce a positive W-component 
mean velocity, then d W/dy will be negative over most of the boundary layer, because 
a given pressure gradient deflects the slow-moving fluid within the boundary layer 
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more than the faster-moving free stream. The generation of this ‘secondary flow’ is 
quasi-inviscid (Hawthorne 1951 ; Squire & Winter 1951 ; Johnston 1960; Goldberg & 
Reshotko 1984), but near the surface the no-slip boundary condition enforces a region 
of positive dW/dy via the gradient of the shear stress in the (y, 2)-plane, -dvw/dy. 

Van den Berg et al. (1975) reported mean-flow measurements at the Netherlands 
NLR on a model representing a 35” swept, ‘infinite’ (very high aspect ratio) wing; 
turbulence measurements in the same rig were reported by Elsenaar & Boelsma 
(1974). By the time of Euromech 60 (and the accompanying comparison of calculation 
methods known as the ‘ Trondheim Trials ’ ; see East 1975 and Fannelop & Krogstad 
1975) it  was clear that there were significant discrepancies between the NLR 
measurements - the only data for a 3D boundary layer in prolonged adverse pressure 
gradient - and the available calculation methods. Methods based on an isotropic eddy 
viscosity cannot produce a lag in shear-stress direction behind the direction of the 
mean-velocity gradient, which arises because the Reynolds stresses obey partial 
differential ‘transport ’ equations rather than algebraic formulae. However, even 
calculation methods basedexplicitly on the transport equations seem to underestimate 
the lag. Furthermore, the transport-equation methods presented at  the Trondheim 
trials were also unable to reproduce the decrease in magnitude of the shear stress found 
at the downstream stations in the NLR boundary layer. 

To improve the predictions of shear-stress direction (i.e. of the lag angle), Rotta 
(1979) proposed a generally applicable modification to calculation methods based on 
a consideration of the direction of the mean-velocity vector. Unfortunately any model 
that directly uses the mean-velocity vector (as distinct from the velocity-gradient 
vector) violates the principle of Galilean (translational) invariance. Such a model 
would, for instance, produce quite different effects in the flow from the stationary 
to the rotating part of a turbomachine hub according to whether the velocity was 
measured with respect to the local surface or to some ‘fixed’ point: more generally, 
results in a coordinate system fixed to a solid surface will vary according to the 
velocity difference across the viscous sublayer - that is, according to the Reynolds 
number, which does not normally appear directly in turbulence models for outer-layer 
behaviour. Exactly the same objection applies to the various schemes which assign 
different values to the spanwise and chordwise components of eddy viscosity: the 
results depend on the axes, and while this may be empirically useful for flows that 
become three-dimensional after a well-defined two-dimensional history it is not 
generally acceptable. On the other hand, properly invariant attempts to base model 
modifications on the difference between the shear-stress direction and the velocity- 
gradient direction have no effect on eddy-viscosity methods and seem not to have 
achieved any success when applied to other methods. Therefore we do not discuss 
models of this type further, although purely empirical modifications to turbulence 
models can obviously produce good agreement with a small range of data irrespective 
of physical plausibility. A model which is in principle free from the ‘invariance’ 
objection is that of van den Berg (see Fernholz 1982) who considers the pressurntrain 
term in the Reynolds-stress transport equations directly : however the assumption 
made for the pressure fluctuation is somewhat crude and difficult to connect with 
eddy behaviour. Finally, since our interest is in the turbulence structure, we do not 
need to consider the effects of breakdown of the boundary-layer approximation - 
specifically, the appearance of a significant normal pressure gradient - on mean-flow 
predictions. 

The present work is an extension of the NLR experiment to include the measurement 
of triple products of velocity fluctuations, so that all the terms in the Reynolds-stress 
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transport equations could be obtained by direct measurement or by difference. The 
curious behaviour of the shear-stress magnitude and of the ‘lag angle’ must be 
attributable to the pressurestrain ‘redistribution ’ term in the Reynolds-stress 
transport equations, but this term is not at present directly measurable and must 
therefore be deduced by difference. The measurements were made at about the same 
Reynolds number as the NLR experiments, but used a 0.762 x 0.127 m (30 x 5 in.) 
blower wind tunnel instead of the 3 x 2 m return-circuit tunnel used at NLR. The 
mean-velocity and Reynolds-stress measurements essentially confirm the results of 
the NLR experiment, and it is found that the triple products, like the Reynolds 
stresses, decrease significantly near the downstream end of the flow. Unlike the NLR 
flow the present boundary layer does not reach separation: this was a deliberate 
choice for the first series of experiments to avoid possible unsteadiness in the flow, 
which may contribute more to the normal stresses than to the shear stresses, thus 
producing a syurious decrease in the ratio of shear stress to turbulent intensity. 

Measurements in 3D boundary layers of the type found on swept wings are 
reviewed by Johnston (1976) and Cebeci (1984): see also the IUTAM conference 
proceedings edited by Fernholz (1982), especially the paper by van den Berg. In  wing 
boundary layers, the streamwise component of vorticity is nearly equal to d W/dy 
(with y normal to the surface), dV/dz being very much smaller. That is, the mean 
vorticity can be thought of as made up of vortex sheets roughly parallel to the 
(z,z)-plane, rather than streamwise ‘line’ vortices with dV/dz of the same order as 
dW/dy, which occur near wing roots and wing tips and in other ‘slender’ flows. 

In the present paper, our main concern is with the outer layer of the boundary 
layer : we do not consider the validity of the various forms of the law of the wall that 
have been suggested for 3D flows (for a review see Pierce, McAllister 6 Tennant 1983). 
The effect of the no-slip condition at the surface spreads only rather slowly into the 
outer part of the boundary layer: therefore the change in shear-stress profile near 
the wall, which begins when a pressure gradient is applied, is confined to an ‘internal 
layer’ within the inner part of the flow. The behaviour of the outer layer in flows 
like the present one, specifically the departure of turbulence-structure parameters 
from normal two-dimensional values, is attributable to the addition of a secondary 
spanwise shear dW/dy to the two-dimensional shear dU/dy under which the 
boundary layer initially developed. In  practical flows the direction of the mean-shear 
vector may change continuously all the way from the flow origin, but the effect on 
turbulence structure will be similar. Also, practical flows may not approximate to 
‘infinite’ swept wings, but there is no serious suggestion that the low values of 
shear-stress magnitude found in the NLR experiment and in the present results are 
peculiar to this configuration. Therefore the present results, and deductions from 
them, should be applicable to any kind of 3D boundary-layer flow, at least in the 
absence of significant concentrated streamwise vortices. 

2. Equipment and techniques 
The working-section duct shown in figure 1 was attached to one of the blower 

tunnels described by Bradshaw (1972). Measurements were made on the floor of the 
duct, which had a suction slot swept at 35’ to create a new boundary-layer origin, 
simulating the leading edge of a swept wing. A 1 mm trip wire was taped to the floor 
just behind the slot. A pressure gradient was applied by bending the roof upwards, 
the generators of the developable roof shape being swept at 35O and remaining 
horizontal. An infinitely wide rig of this sort would produce infinite-swept-wing 



108 P. Bradshaw and N .  S. Pontikos 

curred roof 
Flat roof 

Floor (test surface) 

SIDE VIEW 
Contraction 
exit 

i,u Measurement \ 

PLAN VIEW \ 

FIQURE 1. Test duct for 762 x 127 mm blower'tunnel, simulating 
35' swept wing. All dimensions in mm. 

conditions, the gradients (but not the velocities) along the lines of 35" sweep being 
zero. In a rig of finite width it is necessary to deflect the sidewalls to follow the 
streamlines of the inviscid flow or, in practice, to minimize the variation of static 
pressure along the generators. The approximation to infinite-swept conditions 
(figure 2a) seems to be rather closer than that of the NLR rig, while the final pressure 
distribution achieved (figure 2 b) reproduces the streamwise variation of pressure set 
up in the NLR experiments fairly accurately. The x-direction - along the tunnel axis 
- will be referred to below as ' axial ' and the z-direction as ' cross-stream ' or ' lateral ' : 
these are the chordwise and spanwise directions of aeronautical terminology, but the 
latter terms invite confusion with the XI- and zr-axes aligned with the generators 

Figure 2 (c) shows the velocity magnitude at the boundary-layer edge (actually 
deduced from surface pressures), normalized by the value at the first measurement 
station: the same figure shows the friction velocity. Figure 2 ( d )  shows the angle 
between the edge velocity and the value at the first measurement station: for a truly 
infinite swept wing this is uniquely related to the velocity magnitude by the 
requirement of constant velocity component along the generators. In  the present 
experiments the flow at the initial station was very nearly along the tunnel axis, but 
in the NLR experiment there was already significant lateral flow at the reference 
station: this accounts for the rather large difference between the two curves in 
figure 2 (d )  and for some other differences between the two experiments. The aspect 
ratio of the present rig is considerably smaller than that of the NLR model, and we 

(figure 1). 
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checked that fluid from the ‘outside’-wall boundary layer did not travel across the 
floor as far as any of the measurement stations, which were located nearer the ‘inside ’ 
wall to avoid this. The boundary layer downstream of the suction slot is thickened 
by sandpaper on the surface, so the profile shape a t  the start of the adverse pressure 
gradient is only roughly representative of a flat-plate boundary layer and has a ‘wake 
parameter ’ as large as 0.87 compared with the equilibrium value of about 0.6, although 
the behaviour of dimensionless turbulence parameters appears to be standard. The 
initial boundary-layer thickness was kept somewhat smaller than in the NLR 
experiment, resulting in a smaller dimensionless pressure gradient without 
separation. 

Conventional hot-wire techniques were used, with DISA 55D01 and 55M01 
anemometers and home-made cross-wire probes using 5 pm platinum (Wollaston) 
wires. The active length of the wires was 1 mm, with approximately 1 mm sleeves. 
Wire angles were nominally 45’ but were not measured directly, the measured yaw 
calibrations being fitted by a ‘cosine’ law to give an effective wire angle. This 
calibration fit, if accurate, implies that the probe resolves velocity components along 
and perpendicular to its own axis, rather than relative to the local-mean-flow 
direction. Therefore, providing that crossflow angles are not too large, it  is not 
necessary to point the probe directly into the flow, nor is it necessary to make 
corrections for crossflow angle or incidence as in the NLR experiments. In fact, all 
the measurements were made with the probe pointing along the tunnel axis, crossflow 
angles in the outer part of the boundary layer being less than 10’ even at the station 
furthest downstream. As in the NLR experiments and our own previous work, 
statistics involving v- and w-component-velocity fluctuations together were obtained 
by rotating the cross-wire probe through angles of plus and minus 45” about its own 
axis, so that it responded to (v+w)/2/2 or (v-w)/1/2 instead of simply to v or w: 
all required Reynolds stresses and triple products can be obtained from mean squares 
or mean cubes of the wire difference signals. The differencing procedure increases 
error and accounts for some of the scatter in v, w statistics. 

All hot-wire fluctuation signals were recorded on analog tape and later transcribed 
to digital tape for batch processing - including linearization of calibrations - on the 
College Cyber computers. Data analysis was conventional : the intermittency factor 
was obtained by declaring the flow at each instant to be ‘turbulent ’ if the numerical 
values of either the first or the second time derivative of uv, obtained from digitized 
records by central-difference formulae, exceeded given thresholds. The thresholds 
were respectively 0.3 times the rectified-mean value of duvldt and 0.35 times the 
rectified-mean value of dzuv/dt2, both mean values being averages over the 
turbulent zones only. Guessed threshold values are read into the program and used 
for the first few thousand points of digital data, after which the thresholds are based 
on continuously updated values of the rectified means. 

The only novel equipment used during the experiment was the ‘surface-fence’ 
surface-shear-stress meter described by Pontikos & Bradshaw (1981) in which two 
surface fences at right angles, independent but close together, are used to obtain the 
magnitude and direction of the surface-shear-stress vector. In principle, this device 
relies only on the universality of the velocity profile in the viscous sublayer, and not 
on the logarithmic law. 
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FIQURE 2. The ‘external ’ flow : -. -. -, NLR measurements. (a) Surface-pressure distribution 
parallel to generators: z / l  is distance from centreline as fraction of generator length, z is along tunnel 
axis, x origin at suction slot, c p  reference at x = 460 mm. ( b )  Surface-pressure distribution parallel 
to tunnel axis, in boundary-layer measurement plane. (c) Magnitude of boundary-layer-edge 
velocity U,  and friction velocity u,. Urer is U ,  at z = 692 mm (first measurement station). 0,  A, 
%hole yawmeter parallel to tunnel axis; + , %hole yawmeter, null reading; 0, surface-fence pair. 
( d )  Direction of boundary-layer edge velocity. x , 3-hole yawmeter; 0, +, %hole yawmeter, null 
reading ; 0, calculated from surface pressure assuming infinite-swept-wing conditions. 

3. Physics of three-dimensional boundary layers 
In two-dimensional boundary layers, a longitudinal (2-wise) pressure gradient does 

not directly alter the spanwise component of vorticity on a given streamline. Thus, 
to the boundary-layer approximation, the mean shear dU/dy is not affected by 
pressure gradient, except in the ‘internal layer’ in which viscous and turbulent 
diffusion smooth out the effect of the no-slip condition at the surface. In  3D flows 
the response to x-wise pressure gradients is generally similar, but a z-wise component 
of pressure gradient leads to a velocity gradient dW/dy, that is, to streamwise 
vorticity. The Squire-Winter-Hawthorne (SWH) inviscid-secondary-flow formula 
shows that, for small disturbances, rotation of the velocity vector through an angle 
a to the right (positive z) rotates the mean-vorticity vector from its initial direction, 
parallel to the z-axis, through an angle a to the left. We shall see below that the SWH 
inviscid formula gives surprisingly good results for flows like the present one, in which 
an initially 2D boundary layer enters a region with a strong z-wise component of 
pressure gradient. A second-order effect of this ‘skewing’ of the initially z-wise 
vorticity vector is that the mean shear in the original (x, y)-plane dU/dy gradually 
decreases. Conventional transport-equation turbulence models for the (2, y )-plane 
shear stress -uv in a 3D boundary layer do not include dW/dy: it does not appear 
in the ‘generation’ term v2dU/dy in the exact transport equation for -uv, and is 
not normally included in models of the pressurestrain term, except as a rather small 
second-order effect. If the flow was initially two-dimensional the response of uv to 
a z-wise component of mean shear must be symmetrical, so that any formal expansion 
begins with a second-order term in (d W/dy)2, but the results of the NLR experiment 
and the present work suggest that the effect of d W/dy on uv is in fact quite large. 
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Analogously, the effect of dU/dy on the cross-stream shear stress vw is implicitly 
assumed small in most calculation methods. The most obvious of the observed 
phenomena, the lag of the shear-stress direction y, = tan-l (vw/uv) behind the 
direction of the mean-velocity gradient yg = tan-’ [(dU/dy)/(d W/dy)] is at  least 
qualitatively represented by transport-equation models, because these relate the rate 
of change of shear stress, rather than the shear stress itself, to the relevant 
mean-velocity gradient. 

A popular method of representing the crossflow-velocity profile in a 3D boundary 
layer is the ‘triangular ’ plot, used by Johnston (1957 ; see also Johnston 1960) and 
attributed by him to Gruschwitz (1935), inwhich the velocity component perpendicular 
to the local free-stream direction is plotted against the velocity component in the 
free-stream direction. The SWH formula immediately predicts that the outer 
(small-defect) part of the triangular profile should be a straight line, and in the present 
case the slope of the outer part in the real turbulent boundary layer is close to the 
SWH prediction. Johnston (1960) presents an allowance for finite velocity defect but 
the main shortcoming of the inviscid SWH formula is that it neglects entrainment 
into the boundary layer. 

A first approximation for the axial component of shear stress uv is that uv and the 
turbulent energy, both on a given streamline, should be unaffected by the axial and 
lateral components of pressure gradient. The ‘frozen flow ’ approximation implies that 
the cross-stream component of shear stress vw remains zero in axes referred to the 
original two-dimensional flow. However, one expects the response of vw to d W/dy 
to be of first order and, indeed, eddy-viscosity methods - which neglect flow history 
and ‘lag’ effects - simply yield -vw proportional to dW/dy. Thus, in the notation 
introduced above, y, = yg. As commented above, current transport-equation methods 
qualitatively predict the lag of y7 behind yg as the latter increases in magnitude, but 
do not predict the decrease (or diminished increase), of uv in the presence of signi- 
ficant d W/dy. Specifically, even transport-equation methods do not seem to 
predict the observed decrease in the parameter a,, equal to (shear-stress 
magnitude)/(u2+v2+ w2). 

Clearly, the influence of d W/dy on uv implies that the larger, shear-stress-producing, 
turbulent eddies in an initially 2D boundary layer tend to become less organized if 
they are tilted over in the (y, %)-plane by the lateral mean shear d W/dy. This effect 
shows up most clearly when an initially 2D boundary layer is perturbed, but 
presumably occurs whenever the direction of the mean-velocity-gradient vector is 
changing downstream. We seek the explanation in the behaviour of the pressure- 
strain terms in the shear-stress transport equations. Our empirical attempts to 
represent the effect of a streamwise rate of change of yg on the shear stress are 
described below. 

Finally, it  should be noted that the customary resolution of the shear stress and/or 
the eddy viscosity into components along, and perpendicular to, the direction of the 
mean-velocity vector is highly confusing because this direction is not translationally 
invariant, as pointed out in the review of turbulence modelling in Q 1. The meaningful 
directions in the flow are those of the resultant velocity gradient, the vector whose 
components are (dU/dy, d Wldy), or the shear-stress vector whose components are 
( - uv, - vw). On the other hand, most of the results presented below are resolved with 
respect to the tunnel axis, the original direction of the flow : this does not imply that 
general turbulence models should use such axes, but it is legitimate and informative 
to treat the present flow as a 3D perturbation of an initially 2D boundary layer. 
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4. Results and discussion 
The mean-velocity and Reynolds-stress measurements presented here are not 

intended as replacements for those of the NLR experiment, although the substantial 
corroboration of the NLR measurements has some value. The present measurements 
are a self-contained set, including measurements of triple products and some 
higher-order statistics. 

Measurements were made at a number of lateral positions along the initial 
generator as a check that the initial boundary layer was ‘two-dimensional ’, the quotes 
being inserted because what is actually required is a boundary layer with its origin 
on a line swept at 35” : past measurements generally indicate that leading-edge sweep, 
as such, has a negligible effect on both the growth rate and other characteristics of 
a boundary layer in zero pressure gradient, as one would expect from the boundary- 
layer approximation. The main set of measurements was taken at four stations on 
a line parallel to the tunnel axis (figure 1). The difference between this and 
measurements on a line perpendicular to the generators in plan view (the z’-direction 
in figure 1)  is negligible if infinite-swept-wing conditions have really been achieved. 

The pressure rise and crossflow angle upstream of the first measurement station 
were fairly small, the free-stream deflection at the first station being less than lo, 
compared with 4” in the NLR experiment, which simplifies analysis of the results. 
Details of the checks at the initial generator, and of the results in general, are given 
by Pontikos (1982). 

Figure 3 shows the mean-velocity-magnitude profiles at the four streamwise 
stations, and figure 4 shows the corresponding profiles of crossflow angle, measured 
relative to the local velocity at the edge of the boundary layer. Values of the 
traditional integral parameters for the four stations are given in table 1, and the 
increm of shape parameter H I ,  shows the effect of the pressure gradient on the 
velocity component in the free-stream direction. Figure 5 shows the Johnston 
‘triangular’ or ‘polar’ plot of the velocity components, resolved with respect to the 
free-stream direction and normalized by the local free-stream velocity. The straight- 
line fits to the outer part of the profiles are in fact deductions from the SWH inviscid 
formula with the measurements at z = 692 mm as a starting point, and are seen to 
fit the results quite well. This is partly a coincidence, because the mass-flow rate in 
the boundary layer increases by a factor of nearly three between the first and last 
stations, but i t  certainly indicates that the 3D flow is ‘pressure driven’ rather than 
‘shear driven’. As usual, the peak of the triangular plot corresponds to a position 
well down in the viscous sublayer: this underestimates the actual thickness of the 
‘internal layer’. The lines radiating from the origin in figure 5 have slopes equal to 
the tangents of the surface crossflow angles, measured with the surface fence. There 
is obviously a discrepancy with the yawmeter measurements, but excellent agreement 
was obtained between the surface fence and the yawmeter when the latter was 
touching the surface if the yawmeter was calibrated on the surface (below a. 
two-dimensional boundary layer): the discrepancy near the surface in figure 5 is 
entirely due to wall effect on the yawmeter when used in non-nulling mode with the 
‘free-stream’ calibration. Figure 6 shows the magnitude and direction of the surface 
shear stress. Here, the surface-shear-stress direction or ‘limiting streamline angle ’ is 
referred to the tunnel axis rather than to the local free stream: ‘separation’, that 
is, zero component of surface shear stress normal to the generators, occurs when the 
wall-flow angle reaches 55” (90” minus sweep angle) but the shear-stress magnitude, 
obviously equal at this point to the component along the generators, is not zero. The 
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FIQURE 3. Magnitude of velocity in boundary layer. 0, z = 692 mm, Ue/Ue,rer = 1; 
A, 892,0.932; V, 1092,0.881; 0,  1292,0.847. 

present experiment remains well short of separation, in contrast to the NLR 
experiment whose results are shown for comparison. 

Figure 7 shows Reynolds stresses at the four streamwise measurement stations, 
again resolved with respect to the tunnel axis and not the local free-stream direction 
as is more usual. Figure 7 (9) shows the turbulent-energy profiles which are of course 
independent of the axes chosen. Figure 7 ( h )  shows the ratio of the shear-stress 
magnitude to (twice) the turbulent energy, which decreases very significantly as the 
crossflow increases, as in the NLR experiment. The decrease of a, near the surface 
is found even in 2D boundary layers in an adverse pressure gradient, because the shear 
stress is reduced near the surface while the intensity still receives significant contri- 
butions from irrotational disturbances induced by pressure fluctuations generated 
in the outer layer. 

The individual Reynolds-stress profiles in figure 7 are not qualitatively noteworthy, 
except for the behaviour of vw. This is the component of shear stress normal to 
the direction of the original 2D boundary layer, and it rises remarkably slowly in 
response to the imposed cross-stream shear-velocity gradient d Wldy. The present 
measurements did not extend into the inner layer, where vw necessarily changes more 
rapidly because the resultant shear-stress direction asymptotes to that of the limiting 
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streamline at  the surface. The scatter in the hot-wire measurements of vw is 
attributable to their deduction as the small difference of large quantities: the same 
scatter in, say, v2 would be scarcely noticeable as a percentage. 

The best overall view of the shear-stress direction is provided by figure 8, which 
shows the directions of the mean velocity, mean-velocity gradient and resultant shear 
stress. The tradition for such plots (Bradshaw t Terrell 1969; Johnston 1970) is to 
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5, mm U,, ms-I 4: 4: u,, ms-' cr 3 2(u,/Ue)* 

692 33.7 0.03 2.3 1.19 0.00251 
892 31.4 1.43 10.0 1.03 0.002 13 

1 092 29.7 4.89 18.5 0.87 1 0.001 72 
1292 28.6 7.18 24.6 0.775 0.001 47 

5, mm ~ t l s a ,  mm q 1 ,  mm 4 1 7  mm Hll = W Y l l  
692 20.0 3.43 2.50 1.37 
892 29.3 5.89 4.04 1.46 

1092 41.5 9.10 5.94 1.53 
1292 53.8 12.69 7.99 1.59 

TABLE 1 .  External-stream and boundary-layer parameters. Figure 4(b) 
shows smooth curve through $,-#,. 

0.2 0.4 0.6 0.8 1 .o 
Usl u, 

FIGURE 5. Johnston polar plot of velocity in boundary layer. Us, component parallel to edge 
streamline; U,,, component normal to edge streamline. Symbols as in figure 4. 

refer them to the local free-stream direction: figure 8, following van den Berg 
(Fernholz 1982), shows the tunnel-axis direction so that the total deflection of the 
shear-stress vector can be seen at  a glance. The tangents of the velocity-gradient and 
shear-stress angles tend to 0/0 at the boundary-layer edge and are therefore 
unreliable, but the overall trend in the outer layer shows a very slow response to the 
application of the cross-stream velocity gradient. The more rapid response in the inner 
part of the outer layer (e.g. y < 10 mm at x = 1092 mm) is perhaps only marginally 
significant in view of the likely experimental error& The simplest way of expressing 
the results is to say that at x = 1292 mm the shear-stress direction in the main part 
of the boundary layer has turned through only about one-third of the angle through 
which the velocity-gradient vector has turned from its original direction along the 
tunnel axis. Note that this is not a rapidly distorted flow : the distance between the 
start of crossflow (z = 540 mm) and the last measurement station at x = 1292 mm 
is over forty times the boundary-layer thickness a t  the start of crossflow. Quantities 
such as eddy viscosities, ratios of Reynolds stresses, etc., are given by Pontikos (1982). 
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The main new contribution of the present work is a complete set of triple-product 
measurements, which are plotted by Pontikos (1982) for two sets of axes: 'tunnel' 
axes, with 2 along the tunnel centreline and z spanwise, and axes aligned with the 
local mean-velocity direction (denoted by suffix m). The latter axes are those used 
by the NLR group, but the former are definitely preferable in discussing perturbations 
of the flow from its original 2D state. Here we present only a few sample results, for 
Reynolds-stress transport normal to the surface. 
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FIGURE 7(a-c). For description see p. 120. 



Turbulence measurements on an ‘ inJinite’ swept wing 119 

- iiii/ u:,, x 10 

0.5 

0 

0.5 - 

0.25. 

0. 
-=/u:,,x 103 

-0.25. 

-0.5- 

0.1 

g/u:e,  x 103 

0.05 

0 

FIGURE 7(d-f). For description see p. 120. 
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FIGURE 7. Reynolds stresses, referred to (z, %)-axes along and normal to tunnel centreline, made 
dimensionless with edge velocity at z = 692 mm, V,,,. Shear stresses are plotted so that the 
‘expected’ values are positive. Symbols with arrows denote boundary-la er thickness, a,,,. 0,  
z = 692 mm; A, 892 mm; V, 1092 mm; 0,  1292 mm. (a) G/&f, (bLJ/qef,J) z / q e f ,  (d) 
-=/pel, (e) -?Z/qef, (f) +m/Qef, (g (twice) turbulent energy, q2 = G+v2+w2,  (h) ratio 
of shear-stress magnitude, 171 = ((=)2+(m) i , to twice turbulent energy, = G+G+G. 

Figure 9 (a) shows the y-component transport velocity for the turbulent kinetic 

_ - -  energy, defined as 
u2v + 21s + w2v 

V = -  - - ,  
4 u2 + v2+ w2 

where the unmeasurable pressure contribution is neglected. In 2D boundary layers, 
the ratio of V, to the free-stream velocity, if not the absolute value of V,, tends to 
rise in regions of adverse pressure gradient as the relative turbulence intensity 
increases. (The same applies to the eddy diffusivity of turbulent kinetic energy.) In  
the present boundary layer V, decreases strongly with z as the result of a strong 
decrease in the raw triple products. V, becomes negative near the surface, as in 2D 
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FIGURE 8(a-b). For description next page. 

boundary layers in strong adverse pressure gradient. Figure 9 (b )  shows the transport 
velocity for the component of shear stress along the tunnel axis, defined as 

This tends to 0/0 at the edge of the boundary layer more quickly than V,, and values 
in the outermost part of the layer are therefore uncertain. However, the absolute 



122 P. Bradshaw and N .  S. Pontikos 

FIGURE 8. Direction of velocity vector ( U ,  W ) ,  velocity-gradient vector (aU/ay, aW/ay) and 
shear-stress vector (-=, -m) with respect to the external streamline. 0, velocity; A, velocity 
gradient; 0,  sheer stress; -. - * -. -, tunnel-axis direction. (a) 5 = 692 mm, (6) 892 mm, (c) 1092 mm, 
(d) 1292 mm. 



Turbulence measurements on an ‘ injnite ’ swept wing 123 

value of V,, at y l d  = 0.75 is seen to decrease slightly over the first three stations, 
with a small rise at the fourth station. Again as in 2D boundary layers in adverse 
pressure gradients, negative values appear near the surface. Figure 9(c)  shows the 
triple product in the numerator of V,,, and figure 9 ( d )  shows the triple product in 
the numerator of the transport velocity of the cross-stream component of shear stress, 
defined as 

Figure 9(c)  shows that uv2 simply decreases with downstream distance, as implied 
by the plot of Vwv. However, v2w at first decreases with increasing downstream 
distance in much the same way as uo2, but collapses almost entirely a t  the last station, 
with the exception of large and scattered values near the surface. This quantity is 
extremely difficult to measure, but the only reason why results at the last station 
should be particularly unreliable is that the crossflow velocity over the probe is largest 
there - although the yaw angle in the outer layer at the last station is no larger than 
the angle in mid-layer at the preceding station, where the w2w measurements seem 
to be following the same trend as uv2. 

The general conclusions from the triple-product measurements are : that the ability 
of the large eddies to ‘diffuse’ turbulent energy - that is, to transport it in the 
y-direction - is significantly reduced by the onset of three-dimensionality ; that the 
same applies to the diffusion of the component of shear stress along the original flow 
direction; but that the diffusion of the new, cross-stream component of shear stress 
collapses as the crossflow becomes large. Another case in which the triple products 
collapse is the centrifugally stabilized flow over a convex surface (e.g. Smits, Young 
& Bradshaw 1979) : in this case, the Reynolds stresses also collapse, but recover more 
rapidly than the triple products. 

Figure 10 shows the turbulent-kinetic-energy balance conventionally plotted with 
a gain of kinetic energy (e.g. from production) shown as negative. Viscous dissipation 
of turbulent energy has been obtained as the sum of all the other terms, including 
experimental error and the neglected pressure diffusion. The general behaviour is 
similar to that of 2D boundary layers in adverse pressure gradients, but the 
‘measured ’ dissipation rate is consistently larger than the prediction of the empirical 
formula 

which works well both in wholly 2D flows and at the upstream station in the present 
flow. The consequence of this extra dissipation is the downstream decrease of 
turbulent energy already noted, and it is evidently one of the keys to the anomalous 
behaviour of 3D boundary layers. Pontikos gives balances for the three components 
of shear stress, resolved for convenience in axes along and normal to the generators. 
(Serious use of the data would require tabulations so we do not give graphs here.) 
As in 2D flow, generation of shear stress by interaction between the existing 
turbulence and the mean flow is almost balanced by pressure-strain ‘redistribution ’ 
or ‘scrambling ’, otherwise known as the ‘ return-to-isotropy ’ term. Transport terms 
are comparatively small, so the shear-stress balances are not qualitatively spectacular, 
although the excess of pressurntrain redistribution over generation is the root cause 
of decrease of the shear-stress magnitude, just as the excess of dissipation over 
production explains the decay of turbulent energy. 

5 FLY 159 
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FIGURE 9. Triple - _  products. (a) V-component transport velocity of turbulent energy by triple 
products, V, = qev/q2. - (b) V-component transport velocity of axial shear stress -Z by triple 
products, V,, = uua/E.  (c) Triple product uv2 appearing in V,,. (d) Triple product & appearing 
in KW. 

Fourth-order products have also been measured and the v-component flatness 
factor is shown in figure 11. As usual, values in the inner part of the boundary layer 
are slightly below the Gaussian value of 3, while the peak values increase slightly 
with x, ending with a decrease at the last station. The u-component flatness factor 
(not shown here) actually reaches a slightly higher peak value at the last station, while 
the w-component flatness factor, which reaches peak values of as much as 30 in the 
outer part of the boundary layer at the first three stations, decays to a peak value 
not much more than 20 a t  the last station. A remarkable feature shared by all three 
flatness factors is that the region with roughly the ‘Gaussian’ value of 3 extends 
further and further out, as a fraction of the peak location, as the boundary layer 
becomes more three-dimensional. Figure 12 shows the intermittency , the presence of 
turbulence being equated to the presence of large first or second time derivatives 
of uv. Like any other criterion based on the velocity-fluctuation field, this fails to give 
a maximum intermittency of unity unless forced to do so because short quiescent 
intervals inside the turbulence are inevitably recorded as non-turbulent . However, 
it is clear that there is only a slight trend in the intermittency ; the flank of the profile 
moves slightly further out relative to the boundary-layer thickness as the flow 
becomes more three-dimensional. Since the boundary-layer thickness is just a record 
of the history of the shear-stress gradient near the outer edge of the boundary layer, 
it is if anything less representative of the scale of the turbulent region than, say, the 
distance from the surface at which the intermittency falls to 0.5: one should not, 
therefore, make too much of the trend in figure 12, although a crude equation of the 
intermittency to 3/(flatness factor), exact for an on-off Gaussian process, is consistent 
with a decrease in peak flatness factor near the outer edge of the boundary layer at 
the later stations. 

5. General discussion and conclusions 
Although the measurement of cross-statisticsinvolving both the v- and w-component 

fluctuations is subject to considerable uncertainty, the present results for a simulated 
‘infinite’ swept wing show a consistent picture. Turbulent activity decreases as the 
flow becomes more three-dimensional, leading to reductions in the ‘diffusion ’ (rate 

5-2 
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FIQTJRE 10. Turbulent-energy balances. 0,  production ; A, dvection (transport by mean flow) ; 
V, diffusion (transport by turbulence) ; 0, dissipation (difference of other terms) ; -. - * -,dissipation 
(from empirical formultt (6) for two-dimensional flows). All terms made dimensionleas by local 
free-stream velocity U, and boundary-layer thickness (a) z = 692 mm, (b )  892 mm, (c) 
1092 mm, (d) 1292 mm. 
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FIQURE 11 .  v-component flatness factor, Fv =I 7/(8)e. 

of transport, normal to the surface) of momentum, turbulent energy, and shear stress. 
The data analysis did not include detailed conditional sampling, signal-pattern 
recognition or other techniques for exploring the details of eddy structure. However, 
it is clear that the application of a spanwise velocity gradient dW/dy to an initially 
2D flow driven by a velocity gradient dU/dy strongly affects the behaviour of the 
large eddies which effect most of the turbulent transport. If dW/dy rose from zero 
to a fixed proportion of dU/dy, the large eddies and the shear-stress vector would 
eventually align themselves along the new direction of the resultant velocity gradient, 
and relax to the structure typical of 2D flows: it is the rate of change of dW/dy that 
affects the eddy structure. The simplest hypothesis is that the large eddies are 'tilted' 
sideways by d Wldy. If one regards the statistical average shape of the large eddies 
as a sort of eigenmode or preferred disturbance shape, it follows that the large eddies 
in a 2D flow are the most efficient structures for extracting kinetic energy from the 
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FIGURE 12. Intermittency factory (from first and second time derivatives of uv). 

mean shear dU/dy, that  is, the most efficient producers of shear stress. It seems 
plausible that tilting the large eddies over sideways will confuse their behaviour and 
reduce their efficiency (say, the stress-energy ratio plotted in figure 7h).  Note that 
tilting through a large angle is not necessarily implied: the integral of dW/dy in 
mid-layer down the length of the flow is only about 30". I n  boundary layers with 
imbedded longitudinal vortices (e.g. Shabaka, Mehta 6 Bradshaw 1985) tilting 
through angles of order 90' can occur, so that the new uv comes mainly from the old 
uw - which is of course zero in an initially two-dimensional flow. However in ordinary 
3D boundary layers the effect of crossflow or tilting must be more subtle. 

A speculative model of the effect of tilting has been explored by Mr A. J. Davies 
(undergraduate project a t  Imperial College) and the authors. The 'destruction' terms 
in a transport-equation turbulence model are increased by an amount proportional 
to a fading-memory integral of the 'rate of tilt '  dW/dy along a streamline. A 
reduction in the streamwise component of shear stress can of course be simulated, 
but since the correction must be independent of the sign of the tilting and therefore 
goes as (dW/dy)2 the correction tends to be too large and too late. This feature is 
shared by the eddy-viscosity anisotropy correction of Rotta (1977), but it should be 
noted that the present model exhibits correct translational invariance, unlike models 
based on the direction of the velocity vector which, illegally, depends on the relative 
velocity flow and the axis. 

The broad conclusion is that  the present experiment, using a configuration similar 
to  that used in the work at NLR (van den Berg et al. 1975; Elsenaar & Boelsma 1974) 
confirms and extends the results of the latter. We have shown in greater detail that 
the influence of mean-flow three-dimensionality on the dimensionless structure 
parameters of the turbulence is more extensive and more subtle than assumed in 
current calculation methods, which concentrate on the lag in direction of the 
shear-stress vector while not fully accounting for the decrease in magnitude implied 
by figure 7 (h) .  This influence is shown most clearly by experiments like the present 
one, in which an initially two-dimensional boundary layer enters a region of crossflow. 
The triple products that  represent turbulent transport of Reynolds stress and 
turbulent energy normal to  the surface are also affected anomalously by three- 
dimensionality. Evidently the addition of a ' spanwise ' mean-shear component 
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dW/dy to a two-dimensional mean shear dU/dy distorts the eddies created by the 
latter so as to reduce their contribution to shear stress. A turbulence-model 
modification, based on the simple idea that the large eddies topple over sideways, 
did not reproduce the experimental results very convincingly; but this may be the 
fault of an over-crude representation of the toppling process rather than a fault in 
the basic idea. 

Further work should be done on simple configurations, like the present simulation 
of an infinite swept wing, but should include more advanced investigations of 
large-eddy structure. Since most practical flows are three-dimensional, even basic 
turbulence research should pay some attention to the changes in eddy structure that 
are evidently caused by three-dimensionality of the mean flow. 

We are grateful to Dr V. Baskaran for helpful comments on a draft of this paper, 
and for checking the surface-crossflow measurements of figure 4 (b). 
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